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Privacy-Preserving Distributed Estimation with
Limited Data Rate
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Abstract— This paper focuses on the privacy-preserving
distributed estimation problem with a limited data rate,
where the observations are sensitive information. Specif-
ically, a binary-valued quantizer-based privacy-preserving
distributed estimation algorithm is developed, which im-
proves the algorithm’s privacy-preserving capability and
simultaneously reduces the communication costs. The al-
gorithm’s privacy-preserving capability, measured by the
Fisher information matrix, is dynamically enhanced over
time. Notably, the Fisher information matrix of the output
signals with respect to the sensitive information converges
to zero at a polynomial rate. Regarding the communication
costs, each sensor transmits only 1 bit of information to
its neighbours at each time. Additionally, the information
receiver does not require any a priori knowledge on the
upper bounds of the estimates’ norms to decode the quan-
tized information. While achieving the requirements of pri-
vacy preservation and reducing communication costs, the
estimates of the algorithm converge almost surely to the
true value of the unknown parameter even when the privacy
noises in the binary-valued quantizers increase over time. A
polynomial almost sure convergence rate is obtained, and
then the trade-off between privacy and convergence rate is
established. A numerical example demonstrates the main
results.

Index Terms— Distributed estimation; privacy preserva-
tion; binary-valued quantization; Fisher information.

I. INTRODUCTION

D ISTRIBUTED estimation has received close attention
in the past decade due to its extensive applications in

various fields, such as biological networks, online machine
learning, and smart grids [1], [2]. Different from traditional
centralized estimation, the observations of distributed estima-
tion are collected by different sensors in the communication
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network. Therefore, a network communication is required to
fuse the observations from each sensor. However, in actual
distributed systems, observations may contain sensitive infor-
mation, and the network communication may lead to sensitive
information leakage. For example, medical research usually
requires clinical observation data of patients from different
hospitals, which involve the patients’ personal data [3], [4].
Motivated by this sensitive topic, this paper investigates how
to achieve distributed estimation while ensuring that the ob-
servations do not leaked.

The current literature offers several privacy-preserving
methods for distributed systems. One of the methods is the ho-
momorphic encryption method [5]–[8], which provides high-
dimensional security while ensuring control accuracy. Another
commonly used method is the stochastic obfuscation method
[9]–[12], which has the advantages of low computational
complexity and high timeliness. Differential privacy metric or
Fisher information is used to quantify the privacy preserving
capability of the algorithms based on the stochastic obfusca-
tion method. Other methods include the state decomposition
method [13] and the privacy mask method [14].

Among the existing methods, quantizer-based privacy-
preserving methods have recently received significant attention
[15]–[18], owing to their improved privacy preservation while
reducing communication costs. For example, [15] introduces
a dithered lattice quantizer-based differential privacy method
for federated learning. Additionally, [16] proposes a dynamic
quantization-based homomorphic encryption method for the
distributed economic dispatch problem. Moreover, [17] uses an
unbiased ternary quantizer to preserve sensitive information,
while [18] analyzes the privacy-preserving capability of the
stochastic quantizer and applies it to the output tracking
control problem.

Despite the remarkable progress, the existing quantizer-
based privacy-preserving methods suffer from various limi-
tations. Firstly, many existing methods are based on infinite-
level quantizers [15], [18], but real digital networks have a
communication data rate constraint. Although the quantizers in
[16], [17] are finite-level, the information receiver should know
the upper bounds of the states’ norms to decode the quantized
information. Besides, [15] highlights that its infinite-level
quantizer can be transformed into a finite-level quantizer, but
the transformation also requires similar a priori knowledge.
Such a priori knowledge is not always available in practice,
and therefore it is challenging to implement distributed algo-
rithms under a finite data rate without a priori knowledge on
the upper bounds of the states’ norms. This is because in such
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a situation, it is hard to guarantee the unbiasedness of the
quantizer [19]. Secondly, there are still few results to quantify
the improvement in privacy preservation by quantizer-based
methods compared to unquantized ones. [17], [18] reveal that
their quantizer-based methods can achieve (0, δ)-differential
privacy, which is quite different from the ϵ-differential privacy
that is commonly achieved in the unquantized case [4], [9],
[20]. Therefore, differential privacy is difficult to be used
to quantify the improvement in privacy-preserving capability
brought by these quantizer-based methods compared to un-
quantized ones.

This paper overcomes the above limitations under the
framework of the privacy-preserving distributed estimation
problem. The key solution lies in proposing a novel binary-
valued quantizer-based (BQB) privacy-preserving method. The
BQB method preserves sensitive information by using binary-
valued quantizers with privacy noises, and demonstrates strong
privacy, low communication costs and wide applicability. The
BQB method has a stronger privacy-preserving capability
than the unquantized ones. The improvement is quantified
using the Fisher information [10], [21], instead of differential
privacy metric [11], [23]–[25]. Regarding the communication
costs, each sensor transmits only 1 bit of information to its
neighbours at each time. The data rate will not increase with
the dimension of the estimates, because the high-dimensional
estimates are periodically compressed into scalars before quan-
tization. Considering the applicability, the information receiver
does not require any a priori knowledge on the upper bounds
of the estimates’ norms. Therefore, the a priori knowledge can
be removed because the convergence analysis does not rely
on the unbiasedness of the quantizers as in [15], [17]. Instead,
the proposed convergence analysis solely relies on the strict
monotonicity of the privacy noise distribution function [22],
[26].

Furthermore, a BQB privacy-preserving distributed estima-
tion algorithm (BQB-PPDEA) is proposed. Different from
the static privacy-preserving capabilities of the existing algo-
rithms [3], [23], [27], BQB-PPDEA achieves a dynamically
enhanced privacy. The realization of dynamically enhanced
privacy is due to overcoming the difficulties in the following
two aspects. The first difficulty is to find a privacy metric
that characterizes the dynamically enhanced privacy. Common
differential privacy metrics for distributed estimation, learning,
and optimization algorithms [3], [15], [25], [28] focus on
describing the privacy-preserving capability for the observa-
tion sequences. Therefore, it is challenging to characterize
the privacy-preserving capability for each observation dynam-
ically. To overcome this difficulty, this paper employs the
Fisher information as the privacy metric. For BQB-PPDEA,
the Fisher information matrix of the output signals with
respect to the sensitive information converges to zero at a
polynomial rate, which characterizes the dynamic changes
of the privacy-preserving capability of BQB-PPDEA. The
second difficulty involves algorithm design. Existing privacy-
preserving distributed estimation algorithms [25], [29] adopt
decaying privacy noises at the outputs to avoid the algo-
rithms losing convergence while achieving privacy preserva-
tion. However, the decaying privacy noises cannot enable the

corresponding algorithms to achieve the dynamically enhanced
privacy. To overcome this difficulty, in BQB-PPDEA, privacy
noises in the innovation step are removed, and the step-
sizes in the algorithm are adjusted accordingly. Based on
these adjustments, the estimates of the algorithm can still
achieve convergence when the privacy noises are constant or
even increasing, further enabling the algorithm to achieve the
dynamically enhanced privacy.

This paper further studies the privacy-preserving capability
of BQB-PPDEA in complex communication network environ-
ments, especially link failures. Among the existing literature,
[1] models link failures as an independent and identically dis-
tributed (i.i.d.) graph sequence, and [30] extends the model to
the Markovian switching graph case. But, both of these works
does not consider the privacy issue. Link failures in the com-
munication network will reduce the communication frequency,
and thereby improve the privacy-preserving capability of the
algorithm. Using the chain rule for Fisher information matrices
[31] can rigorously characterize the impact of the Markovian
switching graphs on the privacy-preserving capability.

This paper proposes a novel BQB-PPDEA. The main con-
tributions of this paper are summarized as follows.

1) BQB-PPDEA’s privacy-preserving capability is dynam-
ically enhanced. The Fisher information matrix of the
output signals with respect to the sensitive information
converges to zero at a polynomial rate. Furthermore,
the stationary distribution of Markovian switching graphs
is shown to be the key factor affecting the privacy-
preserving capability.

2) Under BQB-PPDEA, each sensor transmits only 1 bit of
information to its neighbours at each time. This is the
lowest data rate among existing quantizer-based privacy-
preserving distributed algorithms [15]–[17]. Additionally,
the information receiver is not required to know the upper
bounds of the estimate’s norms [15]–[17] to decode the
quantized information.

3) The almost sure convergence of BQB-PPDEA is proved
even with increasing privacy noises. A polynomial almost
sure convergence rate is also obtained. BQB-PPDEA is
the first distributed estimation algorithm that achieves
convergence under a finite data rate and increasing noises,
even without considering privacy preservation [32], [33].

4) The trade-off between privacy and convergence rate is
established. Better privacy implies a slower convergence
rate, and vice versa. Furthermore, the sensor operators
can determine their own preference for the privacy and
convergence rate by properly selecting step-sizes and
privacy noise distributions.

The rest of paper is organized as follows. Section II formu-
lates the problem, and introduces the Fisher information-based
privacy metric. Section III proposes BQB-PPDEA. Section IV
analyzes the privacy-preserving capability of BQB-PPDEA.
Section V proves the almost sure convergence of the algorithm,
and calculates the almost sure convergence rate. Section VI
establishes the trade-off between privacy and convergence rate.
Section VII uses a numerical example to demonstrate the main
results. Section VIII gives a concluding remark for this paper.
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Notation
In the rest of the paper, N, R, Rn, and Rn×m are the sets

of natural numbers, real numbers, n-dimensional real vectors,
and n×m-dimensional real matrices, respectively. ∥x∥ is the
Euclidean norm for vector x, and ∥A∥ is the induced matrix
norm for matrix A. A+ is the pseudo-inverse of matrix A. In
is an n×n identity matrix. I{·} denotes the indicator function,
whose value is 1 if its argument (a formula) is true; and 0,
otherwise. 1n is the n-dimensional vector whose elements
are all ones. diag{·} denotes the block matrix formed in a
diagonal manner of the corresponding numbers or matrices.
col{·} denotes the column vector stacked by the corresponding
vectors. ⊗ denotes the Kronecker product. N (0, σ2), Lap(0, b)
and Cauchy(0, r) represent Gaussian distribution with density
function 1√

2πσ
exp

(
−x2/2σ2

)
, Laplacian distribution with

density function 1
2b exp (−|x|/b) and Cauchy distribution with

density function 1
/(

πr
[
1 + (x/r)

2
])

, respectively.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Graph preliminaries
In this paper, the communication graph is switching among

topology graphs G(1), . . . ,G(M), where G(u) =
(
V, E(u),

A(u)
)

for all u = 1, . . . ,M . V = {1, . . . , N} is the set
of the sensors. E(u) ∈ {(i, j) : i, j ∈ V} is the edge
set. A(u) = (a

(u)
ij )N×N represents the symmetric weighted

adjacency matrix of the graph whose elements are all non-
negative. a

(u)
ij > 0 if and only if (i, j) ∈ E(u). Besides,

N (u)
i = {j : (i, j) ∈ E(u)} is used to denote the sensor

i’s the neighbour set corresponding to the graph G(u). Define
Laplacian matrix as L(u) = D(u) − A(u), where D(u) =

diag
(∑

i∈N1
a
(u)
i1 , . . . ,

∑
i∈NN

a
(u)
iN

)
.

The union of G(1), . . . ,G(M) is denoted by G = (V, E ,A),
where E =

⋃M
r=1 E(u), and A =

∑M
u=1 A(u). Besides, set

Ni = {j : (i, j) ∈ E}.
Assumption 1. The union graph G is connected.
Remark 1. The connection assumption is necessary and com-
monly adopted in the distributed estimation problem [1], [30].

The communication graph at time k, denoted by Gk, is
associated with a homogeneous Markovian chain {mk :
k ∈ N} with a state space {1, . . . ,M}, transition probability
puv = P{mk = v|mk−1 = u}, and stationary distribution
πu = limk→∞ P{mk = u}. If mk = u, then Gk = G(u).
Denote qij,k = P{(i, j) ∈ E(mk)}. For convenience, E(mk),
A(mk), a(mk)

ij , N (mk)
i , L(mk) and D(mk) are abbreviated as

Ek, Ak, aij,k, Ni,k, Lk and Dk, respectively, in the rest of
paper.
Remark 2. Markovian switching graphs can be used to model
the link failures [30], [34]. aij,k > 0 implies that the commu-
nication link between the sensors i and j is normal. aij,k = 0
implies that the communication link fails.
Remark 3. Given pu,1 = P{G1 = G(u)}, qij,k can be recur-
sively obtained by

qij,k =
∑

u∈Gij

pu,k, pu,k+1 = P{Gk+1 = G(u)} =

M∑
v=1

pv,kpvu,

where Gij = {u : (i, j) ∈ E(u)}. By Theorem 1.2 of [35],
we have qij,k =

∑
u∈Gij

πu + O
(
λk
p

)
for some λp ∈ (0, 1).

Especially when the initial distribution {pu,1 : u = 1, . . . ,M}
is the stationary distribution {πu : u = 1, . . . ,M}, we have
qij,k =

∑
u∈Gij

πu.

B. Observation model

In the multi-sensor system coupled by the Markovian
switching graphs, the sensor i observes the unknown parameter
θ ∈ Rn from the observation model

yi,k = Hi,kθ + wi,k, i = 1, . . . , N, k ∈ N, (1)

where θ is the unknown parameter, k is the time index,
wi,k ∈ Rmi is the observation noise, and yi,k ∈ Rmi is
the observation. Hi,k ∈ Rmi×n is the random measurement
matrix.

Assumptions for the observation model (1) are given as
follows.

Assumption 2. The random measurement matrix Hi,k is
not necessarily available, but its mean value H̄i is known.∑N

i=1 H̄
⊤
i H̄i is invertible.

Remark 4. Assumption 2 can be used to describe possible
sensor failures [1], [30]. If the sensor i fails with a probability
of pfi , then Hi,k = δi,kĤi, where Ĥi is the deterministic
measurement matrix without considering sensor failures, and
δi,k is a Bernoulli variable with P{δi,k = 1} = 1 − pfi . For
this model of sensor failures, H̄i = (1 − pfi )Ĥi. Then, when
pfi < 1 for all i,

∑N
i=1 H̄

⊤
i H̄i is invertible if and only if∑N

i=1 Ĥ
⊤
i Ĥi is invertible.

Remark 5. The invertibility condition on
∑N

i=1 H̄
⊤
i H̄i is the

global observability assumption, which is commonly adopted
in distributed estimation problem [1], [36], [37].

Assumption 3. {wi,k, Hi,k : i ∈ V, k ∈ N} is an independent
sequence such that

sup
i∈V, k∈N

E ∥wi,k∥ρ < ∞, (2)

sup
i∈V, k∈N

E
∥∥Hi,k − H̄i

∥∥ρ < ∞, (3)

for some ρ > 2, and independent of the graph sequence {Gk :
k ∈ N}.

Remark 6. If ρ in (2) and (3) takes different values, for
example ρ1 and ρ2, respectively, then by Lyapunov inequality
[39], (2) and (3) still hold for ρ = min{ρ1, ρ2}.

C. Dynamically enhanced privacy

This section will formulate the privacy-preserving dis-
tributed estimation problem, where the observation yi,k is the
sensitive information.

The set containing all the information transmitted in net-
work is denoted as S = {sij,k : (i, j) ∈ Ek, k ∈ N}, where
sij,k is the signal that the sensor i transmits to the sensor j
at time k. Then, we introduce Fisher information as a privacy
metric to quantify the privacy-preserving capability.
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Definition 1 (Fisher information, [31]). Fisher information of
S with respect to sensitive information y is defined as

IS(y) = E

[[
∂ ln(P(S|y))

∂y

] [
∂ ln(P(S|y))

∂y

]⊤∣∣∣∣∣y
]
.

Given a random variable x, the conditional Fisher information
is defined as

IS(y|x) = E

[[
∂ ln(P(S|x, y))

∂y

] [
∂ ln(P(S|x, y))

∂y

]⊤∣∣∣∣∣y
]
.

Fisher information can be used to quantify the privacy-
preserving capability because of the following proposition.

Proposition 1 (Cramér-Rao lower bound, [31]). If IS(y) is
invertible, then for any unbiased estimator ŷ = ŷ(S) of y,
E(ŷ − y)(ŷ − y)⊤ ≥ I−1

S (y).

By Proposition 1, smaller IS(y) implies less information
leaks, and vice versa. Therefore, EIS(y) is a natural privacy
metric.

Our goal is to design a privacy-preserving distributed esti-
mation algorithm with the dynamically enhanced privacy as
defined below.

Definition 2. If the privacy-preserving capability of an algo-
rithm is said to be dynamically enhanced, then given any i ∈ V
and k with EIS(yi,k) > 0, there exists T > k such that
EIS(yi,t) < EIS(yi,k) for all t ≥ T .

Remark 7. By Lemma A.1 in Appendix A, limk→∞ EIS(yi,k)
= 0 is a sufficient condition for the dynamically enhanced
privacy.

D. Problem of interest

This paper mainly seeks to develop a new privacy-
preserving distributed estimation algorithm which can simul-
taneously achieve
1) The privacy-preserving capability is dynamically enhanced

over time;
2) The sensor i transmits only 1 bit of information to its

neighbour j at each time;
3) And, the estimates for all sensors converge to the true value

of the unknown parameter almost surely.

III. PRIVACY-PRESERVING ALGORITHM DESIGN

This subsection will firstly give the BQB method, and then
propose BQB-PPDEA.

The traditional consensus+innovations type distributed esti-
mation algorithms [1], [38] fuse the observations through the
transmission of estimates θ̂i,k−1, which would lead to sensitive
information leakage. For the privacy issue, the following BQB
method is designed to transform them into binary-valued
signals before transmission. Firstly, if k = nq + l for some
q ∈ N and l ∈ {1, . . . , n}, then the sensor i generates φk

as the n-dimensional vector whose l-th element is 1 and the
others are 0. The sensor i uses φk to compress the previous
local estimate θ̂i,k−1 into the scalar

xi,k = φ⊤
k θ̂i,k−1. (4)

Secondly, the sensor i generates the privacy noise dij,k with
distribution Fij,k(·) for all j ∈ Ni,k. Then, given the threshold
Cij , the sensor i generates the binary-valued signal

sij,k =

{
1, if xi,k + dij,k ≤ Cij ;

−1, otherwise.
(5)

By using the BQB method (4)-(5), BQB-PPDEA is pro-
posed as in Algorithm 1.

Algorithm 1 BQB-PPDEA.

Input: initial estimate sequence {θ̂i,0}, threshold sequence
{Cij} with Cij = Cji, noise distribution sequence
{Fij,k(·)} with Fij,k(·) = Fji,k(·), step-size sequences
{αij,k} with αij,k = αji,k > 0 and {βi,k} with βi,k > 0.
Output: estimate sequence {θ̂i,k}.
for k = 1, 2, . . . , do

Privacy preservation: Use the BQB method (4)-(5) to
transform the previous local estimate θ̂i,k−1 into the binary-
valued signal sij,k, and send the binary-valued signal sij,k
to the neighbour j.

Information fusion: Fuse the neighbourhood informa-
tion.

θ̌i,k = θ̂i,k−1 + φk

∑
j∈Ni,k

αij,kaij,k (sij,k − sji,k) .

Estimate update: Use the observation yi,k to update the
local estimate.

θ̂i,k = θ̌i,k + βi,kH̄
⊤
i

(
yi,k − H̄iθ̂i,k−1

)
,

where H̄i is given in Assumption 2.
end for

Algorithm 1 has advantages of strong privacy, low commu-
nication costs and wide applicability.

For the privacy, binary-valued quantizers improve the
privacy-preserving capability of Algorithm 1. For example,
in the Gaussian privacy noise case, by Proposition B.3 in
Appendix B, EIS(yi,k) ≤ 2

πEIZ(yi,k), where Z = {xi,k +
dij,k : i ∈ V, (i, j) ∈ Ek, k ∈ N}. This quantifies the
improvement in privacy-preserving capability brought about
by binary-valued quantizers.

For the communication costs, in Algorithm 1, each sensor
transmits only 1 bit of information to its neighbours at each
time. The data rate does not increase with the dimension of
the estimates. This is mainly due to the compressing step in
Algorithm 1. For comparison, [15], [17] consumes at least
⌈log2(3n)⌉ bits to transmit an n-dimensional optimization
variable, ⌈·⌉ is the ceiling function.

For the applicability, any a priori knowledge on the upper
bounds of |xi,k| and ∥θ̂i,k−1∥ is not required in Algorithm 1 to
decode binary-valued signal sij,k. Therefore, our BQB method
is easy to implement. For comparison, such a priori knowledge
is required in the algorithms in [16], [17].

Remark 8. The BQB method can also be applied to many
other privacy-preserving problems, such as privacy-preserving
distributed optimization [28], privacy-preserving distributed
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games [9], privacy-preserving distributed consensus [20] and
so on. For example, in privacy-preserving distributed opti-
mization [28], the decision variable xk

i contains the sensitive
information about the cost functions. Then, one can adopt the
BQB method for transforming the decision variable xk

i into

s′ij,k =

{
1, if φ⊤

k x
k
i + dij,k ≤ Cij ;

−1, otherwise.

to achieve privacy preservation, where φk, dij,k and Cij are
the same as in (4) and (5).

Assumptions for the settings of Algorithm 1 are given as
follows.
Assumption 4. The privacy noise sequence {dij,k : (i, j) ∈
E , k ∈ N} satisfies
i) The density function fij,k(·) of the privacy noise dij,k

exists;
ii) ηij,k = supx∈R

f2
ij,k(x)

Fij,k(x)(1−Fij,k(x))
< ∞;

iii) There exists a sequence {ζij,k} such that for all compact
set X , inf(i,j)∈E,k∈N,x∈X

fij,k(x)
ζij,k

> 0;
iv) {dij,k : (i, j) ∈ E , k ∈ N} is an independent sequence, and

independent of {wi,k,Gk, Hi,k : i ∈ V, k ∈ N}.
Remark 9. The Assumption 4 ii) is for the privacy analysis,
and iii) is for the convergence analysis.
Remark 10. There are many types of privacy noises suitable
for our BQB-PPDEA, including Guassian noises [11], [21],
Laplacian noises [9], [15] and heavy-tailed Cauchy noises [40].
By Lemma 5.3 of [41] and Lemmas A.2-A.4 in Appendix A,
if the privacy noise dij,k obeys distribution N (0, σ2

ij,k) (resp.,
Lap(0, bij,k), Cauchy(0, rij,k)), then ηij,k = 2

πσ2
ij,k

(resp.,
1

b2ij,k
, 4
π2r2ij,k

), and ζij,k =
σij,1

σij,k
(resp., bij,1

bij,k
, rij,1
rij,k

). With these
noise distributions, Assumption 4 ii) and iii) can be greatly
simplified. See Proposition B.1 in Appendix B.
Assumption 5. The step-size sequences {αij,k : (i, j) ∈ E , k ∈
N} and {βi,k : i ∈ V, k ∈ N} satisfy
i)
∑∞

k=1 α
2
ij,k < ∞ and αij,k = O (αij,k+1) for all (i, j) ∈

E ;
ii)
∑∞

k=1 β
2
i,k < ∞ and βi,k = O (βi,k+1) for all i ∈ V;

iii)
∑∞

k=1 zk = ∞ for zk = min{αij,kζij,k : (i, j) ∈ E} ∪
{βi,k : i ∈ V}.

Remark 11. Assumption 5 is the stochastic approximation
condition for distributed estimation [26]. When the step-
sizes are all polynomial, Assumption 5 iii) is equivalent to∑∞

k=1 αij,kζij,k = ∞ for all (i, j) ∈ E and
∑∞

k=1 βi,k = ∞
for all i ∈ V . In Assumption 5, the step-sizes are not neces-
sarily the same for all sensors, in contrast to the centralized
step-sizes adopted in many distributed algorithms [1], [5], [9].
Therefore, the sensor operators can properly select their step-
sizes based on their own requirements.

IV. PRIVACY ANALYSIS

The section will analyze the privacy-preserving capability
of Algorithm 1. Theorem 1 below proves that EIS(yi,k) < ∞.
Then, Theorem 2 shows that the privacy-preserving capability
of Algorithm 1 is dynamically enhanced over time.

Theorem 1. Suppose Assumptions 2, 3, 4 i), ii), iv) and 5 ii),
iii) hold, and

i) βi,kλmax(Qi) < 1, where Qi = H̄⊤
i H̄i and λmax(Qi) is

the maximum eigenvalue of Qi;
ii)
∑∞

t=1

∏t
l=1 ηij,t

(
1−λ+

min(Qi)βi,l

)2
<∞, where λ+

min(Qi)
is the minimum positive eigenvalue of Qi.

Then,

EIS(yi,k)

≤
∑
j∈Ni

∞∑
t=k+1

β2
i,kqij,tηij,t

(
t−1∏

l=k+1

(
1− λ+

min(Qi)βi,l

))2

H̄iH̄
⊤
i

<∞. (6)

Proof. Firstly, we expand the sequence S = {sij,k : (i, j) ∈
Ek, k ∈ N} to S̆ = {sij,k : (i, j) ∈ E , k ∈ N}. Note that we
have expanded the noise sequence {dij,k : (i, j) ∈ Ek, k ∈ N}
to {dij,k : (i, j) ∈ E , k ∈ N} in Assumption 4. Then, for all
(i, j) ∈ E , define

a′ij,k =

{
1, if (i, j) ∈ Ek;
0, otherwise,

s′ij,k =

{
1, if xi,k + dij,k ≤ Cij ;

−1, otherwise.

For (i, j) ∈ E \ Ek, define sij,k = 0. Then, sij,k = a′ij,ks
′
ij,k

and EIS(yi,k) = EIS̆(yi,k).
Note that I{yi,l:l ̸=k}(yi,k) = 0. Then, by Corollary A.1 in

Appendix A,

IS̆(yi,k) ≤ IS̆(yi,k|{yi,l : l ̸= k}) (7)

Note that duv,t is independent of M−
i,t−1,k and yi,k, and xu,t is

σ(M−
i,t−1,k ∪{yi,k})-measurable, where σ(·) is the minimum

σ-algebra containing the corresponding set, and M−
i,t,k =

{yi,l : l ̸= k} ∪ {suv,l : (u, v) ∈ E , l ≤ t}. Then, given M−
i,t,k

and yi,k, one can get {s̆uv,t : (u, v) ∈ E} is independent.
Besides, given M−

i,t,k and yi,k, we have s′uv,t is uniquely
determined by duv,t, and a′uv,t is uniquely determined by Gk.
Then, by Assumption 4, given M−

i,t−1,k and yi,k, one can get
{s′uv,t : (u, v) ∈ E} is independent of {a′uv,t : (u, v) ∈ E}.
Therefore, by Lemma A.6 in Appendix A,

IS̆(yi,k|{yi,l : l ̸= k}) =
∞∑
t=1

∑
(u,v)∈E

Isuv,t+1
(yi,k|M−

i,t,k)

=

∞∑
t=1

∑
j∈Ni

Isij,t+1
(yi,k|M−

i,t,k), (8)

Denote q̄ij,t = P{(i, j) ∈ E|Gt−1}, and note that {dij,k :
k ∈ N} is independent. Then, we have

lnP
{
sij,t

∣∣∣yi,k,M−
i,t,k−1

}
= ln (q̄ij,tFij,t(Cij − xi,t)) I{sij,t=1} + ln(1− q̄ij,t)I{sij,t=0}

+ ln (q̄ij,t (1− Fij,t(Cij − xi,t))) I{sij,t=−1},
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which implies

∂

∂yi,k
ln
(
P
{
sij,t

∣∣∣yi,k,M−
i,t−1,k

})
=

∂

∂yi,k
ln (q̄ij,tFij,t(Cij − xi,t)) I{sij,t=1}

+
∂

∂yi,k
ln (q̄ij,t (1− Fij,t(Cij − xi,t))) I{sij,t=−1}

=− fij,t (Cij − xi,t)

Fij,t(Cij − xi,t)

∂xi,t

∂yi,k
I{sij,t=1}

+
fij,t (Cij − xi,t)

1− Fij,t(Cij − xi,t)

∂xi,t

∂yi,k
I{sij,t=−1}. (9)

Now, we calculate ∂xi,t

∂yi,k
. If k ≥ t, then ∂xi,t

∂yi,k
= 0. If k < t,

then ∂xi,t

∂yi,k
= βi,kH̄i

(∏t−1
l=k+1(In − βi,lQi)

)⊤
φt. Let Ji =

Q+
i Qi. Then, by Lemma A.7 in Appendix A,

∂xi,t

∂yi,k
=βi,kH̄iJi

(
t−1∏

l=k+1

(In − βi,lQi)

)⊤

φt

=βi,kH̄i

(
t−1∏

l=k+1

(Ji − βi,lQi)

)⊤

φt. (10)

Hence, by (7)-(10) and Lemmas A.8 and A.9 in Appendix A,

EIS(yi,k) = EIS̆(yi,k)

=

∞∑
t=1

∑
j∈Ni

E
[(

∂

∂yi,k
ln
(
P
{
sij,t

∣∣∣yi,k,M−
i,t−1,k

}))

·
(

∂

∂yi,k
ln
(
P
{
sij,t

∣∣∣yi,k,M−
i,t−1,k

}))⊤
]

=
∑
j∈Ni

∞∑
t=k+1

β2
i,kE

[
q̄ij,tf

2
ij,t (Cij − xi,t)

Fij,t(Cij − xi,t) (1− Fij,t(Cij − xi,t))

]

·H̄i

(
t−1∏

l=k+1

(Ji − βi,lQi)

)⊤

φtφ
⊤
t

(
t−1∏

l=k+1

(Ji − βi,lQi)

)
H̄⊤

i

≤
∑
j∈Ni

∞∑
t=k+1

β2
i,kqij,tηij,t

(
t−1∏

l=k+1

(
1− λ+

min(Qi)βi,l

))2

H̄iH̄
⊤
i

<∞.

The following theorem shows that Algorithm 1 achieves the
dynamically enhanced privacy.

Theorem 2. Suppose the condition of Theorem 1 holds, and

iv) pu,1 = P{G1 = G(u)} = πu;
v) ηij,k ≤ ηij,1

k2ϵij
with ηij,1 > 0 and ϵij ≥ 0;

vi) βi,k =
βi,1

kδi
if k ≥ ki,0; and 0, otherwise, where δi ∈

(1/2, 1] , βi,1 ∈ (0, kδii,0) and 2λ+
min(Qi)βi,1 + 2ϵij > 1;

then

EIS(yi,k)≤
∑
j∈Ni

∑
u∈Gij

πuRij,kβi,kηij,kH̄iH̄
⊤
i = O

(
1

kδi+2ϵij

)
,

(11)

where qij,k is given in Subsection II-A, and

Rij,k=


βi,1

2λ+
min(Qi)βi,1+2ϵij−1

(k+1)2λ
+
min

(Qi)βi,1k2ϵij

(k−1)2λ
+
min

(Qi)βi,1+2ϵij
, if δi = 1;

βi,1

2λ+
min(Qi)βi,1−(δi−2ϵij)kδi−1 , if δi ∈ (1/2, 1).

Therefore, Algorithm 1 achieves the dynamically enhanced
privacy.

Proof. If k < ki,0, then βi,k = 0, which together with (6)
implies EIS(yi,k) = 0.

If k ≥ ki,0, then by Lemma A.2 of [42], one can get

H̄i

(
t−1∏

l=k+1

(Ji − βi,lQi)

)⊤

φtφ
⊤
t

(
t−1∏

l=k+1

(Ji − βi,lQi)

)
H̄⊤

i

≤

(
t−1∏

l=k+1

(
1− λ+

min(Qi)βi,1

lδi

))2

H̄iH̄
⊤
i

≤



(
k+1
t−1

)2λ+
min(Qi)βi,1

H̄iH̄
⊤
i ,

if δi = 1;

exp
(

2λ+
min(Qi)βi,1

1−δi

(
(k + 1)1−δi − t1−δi

))
H̄iH̄

⊤
i ,

if δi < 1.

(12)

Therefore, if δi = 1, then

EIS(yi,k)

≤
∑
j∈Ni

∞∑
t=k+1

β2
i,kqij,tηij,t

(
k + 1

t− 1

)2λ+
min(Qi)βi,1

H̄iH̄
⊤
i

≤
∑
j∈Ni

β2
i,1ηij,1

 ∑
u∈Gij

πu

 (k + 1)2λ
+
min(Qi)βi,1

k2

·
∞∑

t=k+1

H̄iH̄
⊤
i

(t− 1)2λ
+
min(Qi)βi,1+2ϵij

≤
∑
j∈Ni

β2
i,1ηij,1

 ∑
u∈Gij

πu

 (k + 1)2λ
+
min(Qi)βi,1

k2

· (k − 1)1−2λ+
min(Qi)βi,1−2ϵij

2λ+
min(Qi)βi,1 + 2ϵij − 1

H̄iH̄
⊤
i

≤
∑
j∈Ni

 ∑
u∈Gij

πu

 βi,1

2λ+
min(Qi)βi,1 + 2ϵij − 1

· (k + 1)2λ
+
min(Qi)βi,1k2ϵij

(k − 1)2λ
+
min(Qi)βi,1+2ϵij

βi,kηij,kH̄iH̄
⊤
i . (13)

If δi < 1, then 2λ+
min(Qi)βi,1k

1−δi > 1 − 2ϵij ≤ δi − 2ϵij ,
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which together with Lemma A.10 in Appendix A implies

EI{sij,t:j∈Ni,t∈N}(yi,k)

≤
∑
j∈Ni

∞∑
t=k+1

β2
i,kηij,tqij,t

exp
(

2λ+
min(Qi)βi,1

1−δi
(k + 1)1−δi

)
exp

(
2λ+

min(Qi)βi,1

1−δi
t1−δi

) H̄iH̄
⊤
i

≤
∑
j∈Ni

 ∑
u∈Gij

πu

 β2
i,1ηij,1

k2δi
exp

(
2λ+

min(Qi)βi,1

1− δi
(k + 1)1−δi

)

·
∞∑

t=k+1

exp
(
− 2λ+

min(Qi)βi,1

1−δi
t1−δi

)
t2ϵij

H̄iH̄
⊤
i

≤
∑
j∈Ni

 ∑
u∈Gij

πu

 βi,1

2λ+
min(Qi)βi,1 − (δi − 2ϵij)kδi−1

· βi,kηij,kH̄iH̄
⊤
i . (14)

Hence, by βi,kηij,k = O
(

1
kδi+2ϵi

)
, (11) is obtained. Then,

by Proposition B.3, Algorithm 1 achieves the dynamically
enhanced privacy.

Remark 12. By (11), there is a linear relationship between
the upper bound of EIS(yi,k) and

∑
j∈Ni

βi,kηij,k. Therefore,
the sensor i’s operator can control the convergence rate of
EIS(yi,k) by properly selecting the step-size βi,k and the
privacy noise distributions. Additionally, the stationary distri-
bution of Markovian switching graphs is also shown as a key
factor affecting the privacy-preserving capability in (11).

The following corollary analyzes the privacy-preserving
capability of Algorithm 1 with three types of privacy noise
distributions, including Gaussian, Laplacian and Cauchy ones.

Corollary 1. Assume that Assumptions 2-5 hold. The privacy
noise dij,k obeys one of the following distributions
i) N (0, σ2

ij,k) with σij,k = σij,1k
ϵij , σij,1 > 0 and ϵij ≥ 0;

ii) Lap(0, bij,k) with bij,k = bij,1k
ϵij, bij,1 > 0 and ϵij ≥ 0;

iii) Cauchy(0, rij,k) with rij,k = rij,1k
ϵij , rij,1 > 0 and ϵij ≥

0.
The step-size βi,k is set as in Theorem 2. Then, EIS(yi,k) =
O
(

1

kδi+2ϵij

)
.

Proof. Firstly, we prove that for all these three types of noise
distributions, there exists positive sequence {ηij,1} such that
ηij,k =

ηij,1

k2ϵij
.

For Gaussian privacy noise case, by Lemma 5.3 of [29],

ηij,k = sup
x∈R

f2
ij,k (x)

Fij,k(x) (1− Fij,k(x))

=
f2
ij,k (0)

Fij,k(0) (1− Fij,k(0))

=
2

πσ2
ij,k

=
2

πσ2
ij,1k

2ϵij
.

Set ηij,1 = 2
πσ2

ij,1
. Then, ηij,k =

ηij,1

k2ϵij
.

For the Laplacian privacy noise case, by Lemma A.3,
ηij,k = 1

b2ij,k
= 1

b2ij,1k
2ϵij

. Set ηij,1 = 1
b2ij,1

. Then, ηij,k =
ηij,1

k2ϵij
.

For the Cauchy privacy noise case, by Lemma A.4, ηij,k =
4

π2r2ij,k
= 4

π2r2ij,1k
2ϵij

. Set ηij,1 = 4
π2r2ij,1

. Then, ηij,k =
ηij,1

k2ϵij
.

By Theorem 1.2 of [35], we have qij,k −
∑

u∈Gij
πu =

O
(
λk
p

)
for some λp ∈ (0, 1). Hence, similar to (12)-(14), one

can get EIS(yi,k) = O
(

1

kδi+2ϵij

)
.

Remark 13. Note that the variance of Gaussian distribution
N (0, σ2

ij,k) is σ2
ij,k, and the variance of Laplacian distribution

Lap(0, bij,k) is 2b2ij,k. Then, by Corollary 1, for these two
types of noise distributions, the upper bound of EIS(yi,k)
is inversely proportional to the noise variance. Therefore,
when the noise variance grows at a faster rate, the privacy
of Algorithm 1 will also be enhanced at a faster rate.

Remark 14. Cauchy distribution is heavy-tailed with infinite
variance. Therefore, the variance cannot be used to describe
the scale of the Cauchy privacy noise dij,k. Instead, the
interquartile range, i.e., P

{
1
4 < dij,k < 3

4

}
, is considered here.

For Cauchy distribution Cauchy(0, rij,k), the interquartile
range P

{
1
4 < dij,k < 3

4

}
= 2rij,k. Then, by Corollary 1, for

Cauchy distribution, the upper bound of EIS(yi,k) is inversely
proportional to the square of the interquartile range. Note that
the variances of Gaussian distribution and Laplacian distri-
bution are directly proportional to their interquartile ranges,
respectively. Then, by Remark 13, the relationship between
the privacy level EIS(yi,k) and the Cauchy privacy noises is
similar to the Gaussian privacy noise and Laplacian privacy
noise cases. Besides, [40] uses heavy-tailed noises to preserve
the outlier of sensitive information. For the mechanism in [40],
when the heavy-tailed privacy noise is larger, the privacy-
preserving capability will be better. This is consistent with
our results.

V. CONVERGENCE ANALYSIS

This section will focus on the convergence properties of Al-
gorithm 1. Firstly, the almost sure convergence will be proved.
Then, the almost sure convergence rate will be obtained.

For convenience, denote

θ̃i,k = θ̂i,k − θ, Θ̃k = col{θ̃1,k, . . . , θ̃N,k}, āij =

M∑
r=1

πra
(r)
ij ,

H̄ = diag{H̄⊤
1 H̄1, . . . , H̄

⊤
N H̄N},

H̄β,k = diag{β1,kH̄
⊤
1 H̄1, . . . , βN,kH̄

⊤
N H̄N},

Φi,k = φk

∑
j∈Ni

αij,k(aij,k − āij) (sij,k − sji,k) ,

Φ′
i,k = φk

∑
j∈Ni

αij,kāij

(
(sij,k − sji,k)− 2(F̂ij,k − F̂ji,k)

)
,

Wk = col{β1,k

(
y1,k − H̄1θ

)
, . . . , βN,k

(
yN,k − H̄Nθ

)
},

+
[
Φ⊤

1,k, . . . ,Φ
⊤
N,k

]⊤
+
[
(Φ′

1,k)
⊤, . . . , (Φ′

N,k)
⊤]⊤ ,

Fk = σ({wi,t,Gt, Hi,t, dij,t : i ∈ V, (i, j) ∈ Et, 1 ≤ t ≤ k}).

Then, Θ̃k is Fk-measurable.
The following theorem proves the almost sure convergence

of Algorithm 1.
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Theorem 3. Suppose Assumptions 1, 2, 3, 4 i), iii), iv) and 5
hold. Then, the estimate θ̂i,k in Algorithm 1 converges to the
true value θ almost surely.

Proof. By Theorem 1.2 of [35], there exists λa ∈ (0, 1) such
that Eaij,k = āij + O

(
λk
a

)
. Then, by Assumptions 3 and 4

iv), we have E [aij,ksij,k|Fk−1] = āijF (Cij −xi,k)+O
(
λk
a

)
.

Therefore, one can get

E
[
∥θ̃i,k∥2

∣∣∣Fk−1

]
=∥θ̃i,k−1∥2 − 2βi,k

(
H̄iθ̃i,k

)2
+ 2φ⊤

k θ̃i,k−1

∑
j∈Ni

αij,kāij

(
F̂ij,k − F̂ji,k

)

+O

β2
i,k

(
∥θ̃i,k−1∥2 + 1

)
+
∑
j∈Ni

α2
ij,k + λk

a

 ,

where F̂ij,k = Fij,k(Cij − xi,k). Define x̃i,k = φ⊤
k θ̃i,k−1.

By xi,k = φ⊤
k θ̂i,k−1 = x̃i,k + φ⊤

k θ, we have xi,k − xj,k =
x̃i,k − x̃j,k. Then,∑

i∈V
φ⊤
k θ̃i,k−1

∑
j∈Ni

αij,kāij

(
F̂ij,k − F̂ji,k

)
=2

∑
(i,j)∈E

αij,kāij (xi,k − xj,k)
(
F̂ij,k − F̂ji,k

)
≤ 0,

which implies

E

[∑
i∈V

∥θ̃i,k∥2
∣∣∣∣∣Fk−1

]
≤
∑
i∈V

∥θ̃i,k−1∥2

+O

∑
i∈V

β2
i,k

(
∥θ̃i,k−1∥2 + 1

)
+
∑

(i,j)∈E

α2
ij,k + λk

a

 .

Hence, by Theorem 1 of [44],
∑

i∈V∥θ̃i,k∥2 converges to a
finite value almost surely. Therefore, θ̃i,k, θ̂i,k, and xi,k are
all bounded almost surely.

By the Lagrange mean value theorem [43], there exists ξij,k
between Cij − xi,k and Cij − xj,k such that

F̂ij,k − F̂ji,k =fij,k(ξij,k) (xj,k − xi,k)

=fij,k(ξij,k) (x̃j,k − x̃i,k) .

For convenience, set f̌ij,k = fij,k(ξij,k). By the almost sure
boundedness of xi,k and Assumption 4, there exists f > 0

such that f̌ij,k ≥ fζij,k almost surely.
Define LF,k as a Laplacian matrix whose element in the

i-th row and j-th column is −αij,kāij f̌ij,k if i ̸= j, and∑
l∈Ni

α1j,kāilf̌il,k if i = j. Then,

Θ̃k =
(
IN×n −Hβ,k − LF,k ⊗ φkφ

⊤
k

)
Θ̃k−1 +Wk, (15)

and LF,k ≥ zkf L̄, where zk is given in Assumption 5 and
L̄ =

∑M
r=1 πrL(r).

In addition, by Lemma 5.4 in [45], one can get

k∑
t=k−n+1

1

zt

(
H̄β,t + LF,t ⊗ φtφ

⊤
t

)
≥

k∑
t=k−n+1

(
H̄+ f L̄ ⊗ φtφ

⊤
t

)
≥ nH̄+ f L̄ ⊗ In > 0. (16)

Hence, by Corollary A.2 in Appendix A, Θ̃k and then θ̃i,k
converge to 0 almost surely.

Remark 15. Note that in Algorithm 1, each sensor transmits
1 bit of information to its neighbours at each time, and as
analyzed in Proposition B.2, the privacy noises are allowed
to be increased. Then, by Theorem 3, the estimates of Al-
gorithm 1 can converge to the true value θ even under 1
communication data rate and increasing privacy noises, which
is the first to be achieved among existing privacy-preserving
distributed algorithms [9], [11], [28].

Remark 16. In Assumption 4, the privacy noise can be heavy-
tailed. Therefore, the results in Theorem 3 can also be applied
to the heavy-tailed communication noise case [36], [37]. For
Algorithm 1, the key to achieving convergence with heavy-
tailed noises lies in the binary-valued quantizer, which trans-
mits noisy signals with probably infinite variances to binary-
valued signals with uniformly bounded variances.

Then, the following theorem calculates the almost sure
convergence rate of Algorithm 1.

Theorem 4. Suppose Assumptions 1-5 hold, ρ > 4 and the
distribution of privacy noise dij,k is N (0, σ2

ij,k). Given ki,0,
set αij,k =

αij,1

kγij , βi,k =
βi,1

kδi
if k ≥ ki,0; and 0, otherwise,

and σij,k = σij,1k
ϵij , where

i) αij,1 = αji,1 > 0, σij,1 = σji,1 > 0, γij = γji >
1
2 and

ϵij = ϵji ≥ 0 for all (i, j) ∈ E , and βi,1 > 0 for all i ∈ V;
ii) max(i,j)∈E γij + ϵij < mini∈V δi ≤ maxi∈V δi ≤ 1.

Then, the almost sure convergence rate of the estimation error
for the sensor i is

θ̃i,k =



O
(
1
/
k

λH mini∈V βi,1
N

)
,

if b̄ = 1, 2b− 2λH mini∈V βi,1

N > 1;

O
(
ln k
/
kb−1/2

)
,

if b̄ = 1, 2b− 2λH mini∈V βi,1

N ≤ 1;

O
(
1
/
kb−b̄/2

)
,

if b̄ < 1,

a.s.,

where λH = λmin

(∑N
i=1 H̄

⊤
i H̄i

)
, b = min(i,j)∈E γij and

b̄ = maxi∈V δi.

Proof. By Lemma A.2, ζij,k in Assumption 4 can be 1
kϵij . In

this case, zk in Assumption 5 is min
{

αij,1

kγij+ϵij
: (i, j) ∈ E

}
∪{

βi,1

kδi
: i ∈ V

}
.

If b̄ < 1, then the theorem can be proved by (15), (16) and
Corollary A.3 in Appendix A.
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If b̄ = 1, then k
∑N

i=1 βi,kH̄
⊤
i H̄i ≥ λH mini∈V βi,1. Hence,

by Lemma 5.4 of [45],

1

n

k∑
t=k−n+1

t
(
H̄β,t + LF,t ⊗ φtφ

⊤
t

)
≥λH mini∈V βi,1

N
InN +O

(
1

kτ

)
for some τ > 0, which together with (15) and Corollary A.3
implies the theorem.

Remark 17. For all υ ∈ (0, 1
2 ), when δi = 1, γij > υ + 1

2
and βi,1 is sufficiently large, by Theorem 4, Algorithm 1
can achieve an almost sure convergence rate of o(1/kυ). The
convergence rate is consistent with the classical one [38]
of distributed estimation without considering the quantized
communications and privacy issues.

Remark 18. By Theorems 2 and 4, the best privacy level and
convergence rate will be achieved simultaneously when δi = 1.

Remark 19. If the distribution of dij,k is Lap(0, bij,1kϵij ) and
Cauchy(0, rij,1kϵij ), then by Lemma A.2, ζij,k in Assump-
tion 4 can also be 1

kϵij . Therefore, the convergence rate in
Theorem 4 can also be achieved in the Laplacian noise and
Cauchy noise cases.

VI. TRADE-OFF BETWEEN PRIVACY AND CONVERGENCE
RATE

Based on the privacy and convergence analysis in Theorems
1-4, this section will establish the trade-off between the privacy
level and the convergence rate of Algorithm 1.

Theorem 5. Suppose Assumptions 1-5 hold. Then, given ν ∈
( 12 , 1), there exist step-size sequences {αij,k : (i, j) ∈ Ek, k ∈
N}, {βi,k : i ∈ V, k ∈ N} and the privacy noise distribution
sequence {Fij,k(·) : (i, j) ∈ Ek, k ∈ N} such that EIS(yi,k) =
O
(

1
kχ

)
and θ̃i,k = O

(
1

kν−χ/2

)
almost surely for all i ∈ V and

χ ∈ [1, 2ν).

Proof. Consider the privacy noises obeying the Gaussian dis-
tribution N (0, σ2

ij,k) with σij,k = σij,1k
ϵij , σij,1 = σji,1 > 0

and ϵij = ϵji ≥ 0 as in Corollary 1 and Theorem 4.

Set ki,0 = exp
(⌊

1
δi
lnβi,1

⌋
+ 1
)

, δi = 1, ϵij = χ−1
2 ,

γij =
2+ν−χ

2 , and βi,1 be any number bigger than 2−χ

2λ+
min(Qi)

,

where ⌊·⌋ is the floor function. The step-size αij,k =
αij,1

kγij ,
βi,k =

βi,1

kδi
if k ≥ ki,0; and 0, otherwise. Then, the step-size

conditions in Theorems 2 and 4 are achieved simultaneously.
By Corollary 1, EIS(yi,k) = O

(
1

kδi+2ϵij

)
= O

(
1
kχ

)
. By

Theorem 4, θ̃i,k = O
(
ln k/k(1+ν−χ)/2

)
= O

(
1

kν−χ/2

)
almost

surely. The theorem is proved.

Remark 20. By Theorem 5, better privacy implies a slower
convergence rate, and vice versa. The sensor operators can
determine their preferences by properly selecting step-sizes
and privacy noise parameters.

(a) Graph G(1) (b) Graph G(2)

(c) Graph G(3) (d) Graph G(4)

Fig. 1: Communication graphs

VII. SIMULATION

This section will demonstrate the main results of the paper
by a simulation example.

Consider an 8 sensor system. The communication graph
sequence {Gk : k ∈ N} is switching among G(1), G(2), G(3)

and G(4) as shown in Figure 1. For all u = 1, 2, 3, 4, a(u)ij = 1

if (i, j) ∈ E(u); and 0, otherwise. The communication graph
sequence {Gk : k ∈ N} is associated with a Markovian chain
{mk : k ∈ N}. The initial probability pu,1 = P{G1 = G(u)} =
1
4 . The transition probability matrix

P = (puv)4×4 =


1
2

1
2 0 0

0 1
2

1
2 0

0 0 1
2

1
2

1
2 0 0 1

2

 ,

where puv = P{mk = v|mk−1 = u}. Therefore, the stationary
distribution πu = 1

4 for all u = 1, 2, 3, 4.
In the observation model, the unknown parameter θ =[

1 −1
]⊤

. Sensors fail with probability 1
2 . When the sensor i

does not fail at time k, the measurement matrix Hi,k =
[
2 0

]
if i is odd, and

[
0 2

]
if i is even. When the sensor i fails,

Hi,k = 0. Therefore, H̄i =
[
1 0

]
if i is odd, and

[
0 1

]
if

i is even. The observation noise wi,k is i.i.d. Gaussian with
zero mean and standard deviation 0.1.

In Algorithm 1, the threshold Cij = 0. The step-sizes
αi,k = 3

k0.8 , and βi,k = 3
k if k ≥ 8; and 0, otherwise. Three

types of privacy noise distributions are considered, including
Gaussian distribution N (0, σ2

ij,k) with σij,k = k0.15, Lapla-
cian distribution Lap(0, bij,k) with bij,k = k0.15 and Cauchy
distribution Cauchy(0, rij,k) with rij,k = k0.15. Figure 2 draws
the upper bounds of the non-zero elements in EIS(yi,k) for
each sensor i given by Theorem 2. The figure indicates that the
privacy-preserving capability of Algorithm 1 is dynamically
enhanced under the three types of privacy noise distributions.

Remark 21. Under our setting, H̄iH̄
⊤
i =

[
1 0
0 0

]
if i is odd,

and H̄iH̄
⊤
i =

[
0 0
0 1

]
. Then, by Theorem 2, there is only one

element in the matrix IS(yi,k) is non-zero. Therefore, it is
sufficient to depict the trajectory of non-zero element in the
matrix EIS(yi,k) in Figure 2.
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Fig. 2: The upper boundaries of the non-zero elements in
EIS(yi,k) for each sensor i

Then, we repeat the simulation 100 times, and Figure 3
illustrates the trajectories of 1

100N

∑N
i=1

∑100
ς=1∥θ̃

ς
i,k∥2, where

θ̃ςi,k is the estimate of θ by sensor i at time k in the ς-th run.
The figure demonstrates that the estimates can converge the
true value θ even under increasing noises and 1 communication
data rate.

Fig. 3: The trajectories of 1
100N

∑N
i=1

∑100
ς=1∥θ̃

ς
i,k∥2

To show the trade-off between privacy and convergence
rate, in Algorithm 1, the step-size αk = 3

k(2.9−χ)/2 , and the
privacy noises is Cauchy distributed with rij,k = k

χ−1
2 , where

χ = 1.3, 1.6 and 1.9. Figure 4 depicts the log-log plot for the
boundaries of EIS(y1,k). It is observed that a better privacy

level is achieved with a larger χ. Figure 5 shows the log-log
plot for the trajectories of 1

100N

∑N
i=1

∑100
ς=1∥θ̃

ς
i,k∥2. It is ob-

served that a better convergence rate is achieved with a smaller
χ. Therefore, Figures 4 and 5 jointly demonstrate the trade-off
between privacy and convergence rate for Algorithm 1.

Fig. 4: The log-log plot for the boundaries of the non-zero
elements in EIS(y1,k) with different χ

Fig. 5: The log-log plot for 1
100N

∑N
i=1

∑100
ς=1∥θ̃

ς
i,k∥2 with

different χ

VIII. CONCLUSION

This paper proposes BQB-PPDEA, which has multiple
advantages. For the privacy, the proposed algorithm achieves
the dynamically enhanced privacy, and the Fisher information-
based privacy metric EIS(yi,k) is proved to converge to 0 at
a polynomial rate. For the communication costs, each sensor
transmits only 1 bit of information to its neighbours at each
time. Besides, the information receiver does not require any a
priori knowledge on the upper bounds of the estimates’ norms
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to decode the quantized information. For the effectiveness, the
proposed algorithm can achieve almost sure convergence even
with increasing privacy noises. A polynomial convergence
rate is also obtained. Besides, the trade-off between privacy
and convergence rate is established. When the step-sizes and
privacy noise distributions are properly selected, the better
privacy-preserving capability implies a slower convergence
rate, and vice versa.

There are still many interesting topics deserving further in-
vestigation, For example, how to apply the proposed method to
distributed optimization problems to achieve the dynamically
enhanced privacy and a limited data rate, and how to extend
our results to the time-varying unknown parameter case.

APPENDIX A
LEMMAS AND COROLLARIES

Lemma A.1. If limk→∞ EIS(yi,k) = 0, then the privacy-
preserving capability is dynamically enhanced.

Proof. Since limk→∞ EIS(yi,k) = 0, for any A > 0, there
exists T ∈ N such that EIS(yi,t) ≤ A for all t ≥ T . Then,
the lemma can be proved by setting A = EIS(yi,k).

Lemma A.2. a) If the noise dij,k obeys the distribution
N (0, σ2

ij,k) with infk σij,k > 0, then ζij,k in iii) of
Assumption 4 can be σij,1

σij,k
;

b) If the noise dij,k obeys the distribution Lap(0, b2ij,k) with
infk bij,k > 0, then ζij,k in iii) of Assumption 4 can be
bij,1
bij,k

;
c) If the noise dij,k obeys the distribution Cauchy(0, r2ij,k)

with infk rij,k > 0, then ζij,k in iii) of Assumption 4 can
be rij,1

rij,k
;

Proof. Consider the Gaussian distribution case. Denote f⋆
G(·)

as the density function of the standard Gaussian distribution.
Then,

fij,k(x) =
1

σij,k
f⋆
G

(
x

σij,k

)
.

Since infk σij,k > 0, there exists a compact set X ′ such that
x

σij,k
∈ X ′ for all (i, j) ∈ E , k ∈ N and x ∈ X ′. Therefore,

when ζij,k = 1
σij,k

,

inf
(i,j)∈E,k∈N,x∈X

fij,k(x)

ζij,k
≥ inf

z∈X ′

f⋆
G(z)

σij,1
> 0.

Then, a) of Lemma A.2 holds.
The proofs of b) and c) are similar to that of a), and hence,

omitted here.

Lemma A.3. Given b > 0, if FL(·; b) and fL(·; b) are the dis-
tribution function and the density function of the distribution
Lap(0, b), respectively, then

sup
x∈R

f2
L(x; b)

FL(x; b)(1− FL(x; b))
=

1

b2
.

Proof. Since fL(x; b) = 1
2b exp

(
− |x|

b

)
, one can get

FL(x; b) = 1
2 exp

(
x
b

)
if x < 0; and 1 − 1

2 exp
(
−x

b

)
,

otherwise.

By symmetry,

sup
x∈R

f2
L(x; b)

FL(x; b)(1− FL(x; b))
= sup

x≥0

f2
L(x; b)

FL(x; b)(1− FL(x; b))

= sup
x≥0

1

2b2
(
exp

(
x
b

)
− 1

2

) =
1

b2
.

The lemma is thereby proved.

Lemma A.4. Given r > 0, if FC(·; r) and fC(·; r) are the dis-
tribution function and the density function of the distribution
Cauchy(0, r), respectively, then

sup
x∈R

f2
C(x; r)

FC(x; r)(1− FC(x; r))
=

4

π2r2
.

Proof. Since fC(x; r) =
1

πr[1+(x/r)2]
, one can get FC(x; r) =

1
2 + 1

π arctan
(
x
r

)
.

Firstly, consider the case of r = 1. In this case, FC(x; 1) and
and fC(·; r) are abbreviated as FC(x) and fC(x), respectively.
Denote

hC,1(x)=
FC(x)(1− FC(x))

f2
C(x)

=(1 + x2)2
(
π2

4
− arctan2 x

)
.

Then, h′
C,1(x) = (1+x2)

(
π2x− 2 arctanx− 4x arctan2 x

)
.

Furthermore, denote

hC,2(x) = π2x− 2 arctanx− 4x arctan2 x.

Then, h′
C,1(x) = (1 + x2)hC,2(x), and

h′
C,2(x) =π2 − 2

1 + x2
− 4 arctan2 x− 8x arctanx

1 + x2
,

h′′
C,2(x) =

−4x− 16 arctanx

(1 + x2)2
.

Note that h′′
C,2(x) > 0 when x < 0; h′′

C,2(x) < 0 when
x > 0; and limx→∞ h′

C,2(x) = limx→−∞ h′
C,2(x) = 0.

Then, h′
C,2(x) > 0, which implies that hC,2(x) is strictly

monotonously increasing. Furthermore, by hC,2(0) = 0, we
have hC,2(x) < 0 when x < 0; and hC,2(x) > 0 when x > 0.

Note that h′
C,1(x) = (1 + x2)hC,2(x). Then, h′

C,1(x) < 0
when x < 0; and h′

C,1(x) > 0 when x > 0. Therefore,

sup
x∈R

f2
C(x)

FC(x)(1− FC(x))
=

1

infx∈R hC,1(x)
=

1

hC,1(0)
=

4

π2
.

Now, consider the case of r ̸= 1. In this case, we have

FC(x; r) = FC

(x
r
; 1
)
, fC(x; r) =

1

r
fC

(x
r
; 1
)
.

Therefore,

sup
x∈R

f2
C(x; r)

FC(x; r)(1− FC(x; r))

= sup
x∈R

f2
C

(
x
r ; 1
)

r2FC

(
x
r ; 1
) (

1− FC

(
x
r ; 1
)) =

4

π2r2
.

Lemma A.5 ( [31]). For random variables X,Y, ϑ, we have
IX,Y (ϑ) = IX(ϑ) + IY (ϑ|X) ≥ IX(ϑ).
Remark 22. Lemma A.5 is the chain rule for Fisher informa-
tion matrices.
Corollary A.1. For random variables X,Y, Z, ϑ, we have
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a) IX,Y (ϑ|Z) = IX(ϑ|Z) + IY (ϑ|X,Z);
b) If IY (ϑ|X) = 0, then IX(ϑ|Y ) ≤ IX,Y (ϑ) = IX(ϑ);
c) If IX(ϑ|Z) = 0, then IY (ϑ|Z) ≤ IY (ϑ|X,Z).

Proof. a) By Lemma A.5, we have

IX,Y (ϑ|Z) =IX,Y,Z(ϑ)− IZ(ϑ)
=IX(ϑ|Y, Z) + IX,Z(ϑ|Y )− IZ(ϑ)
=IX(ϑ|Z) + IY (ϑ|X,Z).

b) By Lemma A.5, we have

IX(ϑ|Y ) =IX,Y (ϑ)− IY (ϑ) ≤ IX,Y (ϑ)

=IX(ϑ) + IY (ϑ|X) = IX(ϑ).

c) By a), we have

IY (ϑ|Z) =IX,Y (ϑ|Z)− IX(ϑ|Y, Z) ≤ IX,Y (ϑ|Z)

=IX(ϑ|Z) + IY (ϑ|X,Z) = IY (ϑ|X,Z).

Lemma A.6. For random variables X,ϑ, and random variable
sequences Yk = {Yi,k : i = 1, . . . , N},Zk = {Zi,k : i =
1, . . . , N} for all k ∈ N, if
i) Y1,k, . . . , YN,k ̸= 0, Z1,k, . . . , ZN,k ∈ {0, 1};

ii) Given ϑ, X and Z̆k−1, the sequence Yk is independent,
where Z̆k =

⋃k
t=1 Ẑt and Ẑk = {Zi,kYi,k, i = 1, . . . , N};

iii) Given ϑ, X and Z̆k−1, the sequence Yk is independent of
Zk;

iv) IZk
(ϑ|X, Z̆k−1) = 0,

then

IZ̆∞
(ϑ|X) =

∞∑
k=1

N∑
i=1

IZi,kYi,k
(ϑ|X, Z̆k−1).

Proof. By Corollary A.1,

IZ̆∞
(ϑ|X) =

∞∑
k=1

IẐk
(ϑ|X, Z̆k−1). (A.1)

Note that by i), we have Zi,k can be uniquely determined by
Zi,kYi,k. Then, by iii), given ϑ, X , Z̆k−1 and Zk, we have
Ẑk is independent. Hence, by Corollary A.1,

IẐk
(ϑ|X, Z̆k−1) = IẐk,Zk

(ϑ|X, Z̆k−1)

=IẐk
(ϑ|X, Z̆k−1,Zk) + IZk

(ϑ|X, Z̆k−1)

=

N∑
i=1

IZi,kYi,k
(ϑ|X, Z̆k−1,Zk). (A.2)

By iv), given ϑ, X , Z̆k−1 and Zi,k, we have Yi,k is indepen-
dent of Zj,k for all j ̸= i. Therefore, by Corollary A.1,

IZi,kYi,k
(ϑ|X, Z̆k−1,Zk)

=IZi,kYi,k
(ϑ|X, Z̆k−1, Zi,k)

=IZi,kYi,k,Zi,k
(ϑ|X, Z̆k−1)− IZi,k

(ϑ|X, Z̆k−1)

=IZi,kYi,k
(ϑ|X, Z̆k−1),

which together with (A.1) and (A.2) implies the lemma.

Lemma A.7. For a matrix H , set Q = H⊤H and J = Q+Q.
Then, HJ = H .

Proof. By Theorem 1 of [46],

HJ =(H⊤)+H⊤HQ+Q = (H⊤)+QQ+Q

=(H⊤)+Q = (H⊤)+H⊤H = H.

Lemma A.8. For a positive semi-definite matrix Q, set J =
Q+Q. Then, λmax(J − βQ) = 1 − βλ+

min(Q), where β ∈[
0, 1

λ+
min(Q)

]
, and λmax(·), λ+

min(·) are defined in Theorem 1.

Proof. By Theorem 5 of [47], all the eigenvectors v for Q are
eigenvectors for J − βQ. If Qv = 0, then (J − βQ)v = 0. If
Qv = λv for some λ > 0, then (J − βQ)v = (1− βλ)v. The
lemma is thereby proved.

Lemma A.9. If sequences {ak : k ∈ N}, {bk : k ∈ N} and
{ηk : k ∈ N} satisfy
i) ak ∈ [0, ā] for some ā < 1;

ii) ηk > 0;
iii)

∑∞
t=1

∏t
l=1 ηt(1− al)

p < ∞ for some positive integer p;
iv) bk > 0 and

∑∞
k=1 bk < ∞,

then
∑∞

t=k

∏t
l=k ηt(1− al + bl)

p < ∞ for all positive integer
k.

Proof. Firstly, we have
∞∑
t=k

t∏
l=k

ηt(1− al)
p =

∑∞
t=k

∏t
l=1 ηt(1− al)

p∏k−1
l=1 (1− al)p

≤
∑∞

t=1

∏t
l=1 ηt(1− al)

p∏k−1
l=1 (1− al)p

< ∞.

Then, one can get
∞∑
t=k

t∏
l=k

ηt(1− al + bl)
p

≤
∞∑
t=k

t∏
l=k

ηt(1− al)
p

(
1 +

bl
1− ā

)p

≤

( ∞∑
t=k

t∏
l=k

ηt(1− al)
p

)( ∞∏
t=1

(
1 +

bt
1− ā

))p

< ∞.

Lemma A.10. If c, k0 > 0, g ≥ 0 and p ∈ (0, 1] satisfy
cpkp0 ≥ 1− p− g, then

k∑
t=1

exp (−c(t+ k0)
p)

(t+ k0)g

≤k1−p−g
0 exp(−ckp0)− (k + k0)

1−p−g exp(−c(k + k0)
p)

cp− (1− p− g)k−p
0

.

Proof. From the condition of the lemma, we have∑k
t=1 exp (−c(t+ k0)

p)

(t+ k0)g
≤
∫ k+k0

k0

exp (−ctp)

tg
dt

≤
∫ k+k0

k0

cp− (1− p− g)t−p

cp− (1− p− g)k−p
0

exp (−ctp)

tg
dt

=

∫ k+k0

k0
cpt−g exp (−ctp)− (1− p− g)t−p−g exp (−ctp) dt

cp− (1− p− g)k−p
0

=
k1−p−g
0 exp(−ckp0)− (k + k0)

1−p−g exp(−c(k + k0)
p)

cp− (1− p− g)k−p
0

.
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The lemma is thereby proved.

Lemma A.11. Assume that

i) {αk : k ∈ N}, {βk : k ∈ N} and {γk : k ∈ N} are posi-
tive sequences satisfying

∑∞
k=1 αk = ∞,

∑∞
k=1 β

2
k < ∞

and
∑∞

k=1 γ
2
k < ∞;

ii) {Fk : k ∈ N} is a σ-algebra sequence with Fk−1 ⊆ Fk

for all k;
iii) {Wk,Fk : k ∈ N} is a sequence of adaptive ran-

dom variables satisfying
∑∞

k=1 ∥E [Wk|Fk−1]∥ < ∞ and
E [∥Wk − E [Wk|Fk−1]∥ρ|Fk−1] = O (βρ

k) almost surely
for some ρ > 2;

iv) {Uk : k ∈ N} is a sequence with
∑∞

k=1 α
2
k ∥Uk∥2 < ∞.

And, Uk is Fk−1-measurable;
v) Uk + U⊤

k ≥ 2aIn for some p ∈ N, a > 0 and all k ∈ N
almost surely;

vi) {Xk,Fk : k ∈ N} is a sequence of adaptive random
variables with

Xk = (In − αkUk +O(γk))Xk−1 +Wk, a.s. (A.3)

Then, Xk converges to 0 almost surely.

Proof. Consider X ′
k = Xk − Yk, where Y0 = 0 and Yk =

(In − αkUk +O(γk))Yk−1 + E [Wk|Fk−1]. Since ∥Yk∥ ≤
(1− aαk +O(α2

k ∥Uk∥2 + γk)) ∥Yk−1∥+ ∥E [Wk|Fk−1]∥, by
Lemma 2 of [28], Yk converges to 0. Therefore, it suffices to
prove the convergence of X ′

k, which satisfies

X ′
k = (In − αkUk +O(γk))X

′
k−1 +Wk − E [Wk|Fk−1] .

(A.4)

By (A.4), one can get

E
[
∥X ′

k∥2
∣∣Fk−1

]
≤
(
1− 2aαk + α2

k ∥Uk∥2 +O (γk)
)
∥X ′

k−1∥2 +O
(
β2
k

)
.

(A.5)

Then, by Lemma 2 of [28], we have limk→∞∥Xk∥2 = 0
almost surely.

Corollary A.2. If i)-iv) and vi) in Lemma A.11 hold, αk =
O (αk−1) and

1

p

k∑
t=k−p+1

(
Ut + U⊤

t

)
≥ 2aIn (A.6)

for some p ∈ N, a > 0 and all k ∈ N almost surely, then Xk

converges to 0 almost surely.

Proof. By (A.3), one can get

Xk =

k∏
t=k−p+1

(In − αtUt +O(γt))Xk−p

+

k∑
t=k−p+1

k∏
l=t+1

(In − αlUl)Wt.

In the above recursive function,
k∏

t=k−p+1

(In − αtUt +O(γt))

=In −
k∑

t=k−p+1

αtUt +O

 k∑
t=k−p+1

(
γt + α2

k ∥Uk∥2
) ,

Note that by (A.6),

1

p

k∑
t=k−p+1

αt

(
Ut + U⊤

t

)
≥
(

min
k−p<t≤k

αt

)
1

p

k∑
t=k−p+1

(
Ut + U⊤

t

)
≥2a

(
min

k−p<t≤k
αt

)
In,

and by Lemma A.2 of [26],
∑∞

k=p+1 mink−p<t≤k αt = ∞.
Then, the corollary can be proved by Lemma A.11.

Lemma A.12. If an adaptive sequence {Vk,Fk : k ∈ N}
satisfies

E [Vk|Fk−1] ≤
(
1− a

k
+ γk

)
Vk−1 +O

(
1

kb

)
with a > 0, b > 1 and

∑∞
k=1 γk < ∞, then

Vk =

{
O
(

1
ka

)
, if b− a > 1;

O
(

(ln k)2

kb−1

)
, if b− a ≤ 1.

Proof. If b− a > 1, then

E [kaVk|Fk−1]

≤
(
1− a

k
+ γk

)(
1 +

a

k
+O

(
1

k2

))
(k − 1)aVk−1

+O

(
1

kb−a

)
≤
(
1 + γk +O

(
1

k2

))
(k − 1)aVk−1 +O

(
1

kb−a

)
,

which together with Theorem 1 of [44] implies that Vk =
O
(

1
ka

)
almost surely.

If b− a ≤ 1, then

E
[

kb−1

(ln k)2
Vk

∣∣∣∣Fk−1

]
≤
(
1− a

k
+ γk

)(
1 +

b− 1

k
+O

(
1

k2

))
(b− 1)b−1

(ln(k − 1))2
Vk−1

+O

(
1

k(ln k)2

)
≤
(
1 + γk +O

(
1

k2

))
(b− 1)b−1

(ln(k − 1))2
Vk−1 +O

(
1

k(ln k)2

)
,

which together with Theorem 1 of [44] implies that Vk =

O
(

(ln k)2

kb−1

)
almost surely. The lemma is thereby proved.

Lemma A.13. If sequences {Vk : k ∈ N}, {ξk : k ∈ N},
{ηk : k ∈ N} and {γk : k ∈ N} satisfy
i) ξk ≥ 0, limk→∞ ξk < 1;
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ii)
∑∞

k=1 ηk < ∞,
∑∞

k=1 |γk| < ∞;
iii) Vk ≤ (1− ξk + γk)Vk−1 + ηk +O (ξk),
then Vk is uniformly upper bounded.

Proof. Without loss of generality, assume γk ≥ 0. Be-
sides, by

∑∞
k=1 γk < ∞, there exists k0 such that γk <

1
3 and ξk < 1 + γk for all k ≥ k0. Set Uk =∏k

t=k0

(
1− γt − |γt|

2

)(
Vk −

∑k
t=k0

ηt

)
. Then, there exists

M > 0 such that

Uk =

k∏
t=k0

(
1− γt −

|γt|
2

)(
Vk −

k∑
t=k0

ηt

)

≤
k∏

t=k0

(
1− γt −

|γt|
2

)

·

(
(1− ξk + γk)

(
Vk−1 −

k−1∑
t=k0

ηt

)
+O (ξk + |γk|)

)

=

(
1− γk − |γk|

2

)
(1− ξk + γk)Uk−1 +M (ξk + |γk|) .

If Uk−1 < 2M , then

Uk <

(
1− γk − |γk|

2

)
(1− ξk + γk) 2M +M (ξk + |γk|)

≤
(
1− 1

2
(ξk + |γk|)

)
2M +M (ξk + |γk|) ≤ 2M.

If Uk−1 ≥ 2M , then

Uk ≤
(
1− 1

2
(ξk + |γk|)

)
Uk−1 +M (ξk + |γk|) ≤ Uk−1.

Therefore, Uk ≤ max{Uk−1, 2M}, which implies the uni-
formly boundedness of Uk and further Vk.

Lemma A.14. If i)-vi) in Lemma A.11 hold, ρ > 4, αk = 1
kc ,

βk = 1
kb for c ∈ ( 12 , 1] and b > 1, and ∥E [Wk|Fk−1]∥ ≤ λk

for some λ ∈ (0, 1), then

Xk =


O
(

1
ka

)
, if c = 1, 2b− 2a > 1;

O
(

ln k
kb−1/2

)
, if c = 1, 2b− 2a ≤ 1;

O
(

1
kb−c/2

)
, if c ∈ ( 12 , 1),

a.s. (A.7)

Proof. Consider X ′
k and Yk in the proof of Lemma A.11. One

can get

∥Yk∥∏k
t=1

(
1− a

kc

)
≤(1 +O(α2

k ∥Uk∥2 + γk))
∥Yk−1∥∏k−1

t=1

(
1− a

kc

) + λk∏k
t=1

(
1− a

kc

) .
By Lemma A.2 of [42] and Lemma A.13,

Yk =

{
O
(

1
ka

)
, if c = 1;

O
(
exp

(
a

1−ck
1−c
))

, if c ∈ ( 12 , 1).
(A.8)

Therefore, it suffices to calculate the convergence rate of X ′
k.

If c = 1, then the lemma can be proved by (A.5) and
Lemma A.12. Then, it suffices to analyze the case of c < 1.

For convenience, denote W̃k = Wk − E [Wk|Fk−1]. By
(A.4), one can get

k2b−c ∥X ′
k∥

2

≤
(
1− a

kc
+ α2

k ∥Uk∥2 +O (γk)
)
(k − 1)2b−c∥X ′

k−1∥2

+ 2k2b−cW̃⊤
k (In − αkUk +O(γk))X

′
k−1

+ k2b−c∥W̃k∥2, a.s. (A.9)

Then, by Lemma 2 of [48],
k∑

t=1

2t2b−cW̃⊤
t (In − αtUt +O(γt))X

′
t−1

≤
k∑

t=1

(2tbW̃t)
⊤ (tb−c (In − αtUt +O(γt))X

′
t−1

)
=O (1) + o

(
k∑

t=1

t2b−2c
∥∥X ′

t−1

∥∥2) , a.s., (A.10)

and
k∑

t=1

t2b−c
(
∥W̃t∥2 − E

[
∥W̃t∥2

∣∣∣Fk−1

])
≤

k∑
t=1

t2b
(
∥W̃t∥2 − E

[
∥W̃t∥2

∣∣∣Fk−1

])
· 1

kc
= O(1), a.s.

Therefore, Xk = O
(

1
kb

)
almost surely, which together with

(A.10) implies
k∑

t=1

2t2b−cW̃⊤
t (In − αtUt +O(γt))X

′
t−1 = O(1).

Then, the lemma can be proved by (A.8), (A.9) and
Lemma A.13.

Corollary A.3. Suppose i)-iv), vi) in Lemma A.11 and (A.6)
in Corollary A.2 hold. ρ, αk and βk are set as in Lemma A.14.
Then, Xk can achieve the almost sure convergence rate as in
(A.7).

The proof of Corollary A.3 is similar to Corollary A.2, and
thereby omitted here.

APPENDIX B
EXAMPLES FOR PRIVACY NOISES

The following two propositions gives sufficient conditions
on privacy noises satisfying Assumptions 4 and 5, when the
privacy noises are Gaussian, Laplacian and Cauchy.
Proposition B.1. For the noise distribution N (0, σ2

ij,k) (resp.,
Lap(0, bij,k), Cauchy(0, rij,k)), Assumption 4 ii) holds when
σij,k > 0 (resp., bij,k > 0, rij,k > 0), and Assumption 4
iii) holds when infk∈N σij,k > 0 (resp., infk∈N bij,k > 0,
infk∈N rij,k > 0).

Proof. Consider the Gaussian noise case. By Lemma 5.3
of [41], ηij,k = 2

πσ2
ij,k

. Therefore, when σij,k > 0,
ηij,k < ∞. Besides, Lemma A.2 in Appendix A implies that
infk∈N σij,k > 0 is sufficient to achieve Assumption 4 ii).

The analysis for the Laplacian and Cauchy noise cases is
similar, and thereby omitted here.
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Remark B.1. By Proposition B.1, for Gaussian and Laplacian
privacy noises, Assumption 4 ii) and iii) can be replaced with
the condition that there is a uniform positive lower bound of
the noise variances. The reasons to adopt the assumption are
twofold. For the privacy, sufficient privacy noises can ensure
the privacy-preserving capability of the algorithm. For the
effectiveness, the privacy noises are also necessary dithered
noises in the quantizers [26]. The lack of sufficient dithered
noises in the quantizers will result in the algorithm failing to
converge.
Proposition B.2. For the noise distribution N (0, σ2

ij,k) (resp.,
Lap(0, bij,k), Cauchy(0, rij,k)) with σij,k = σij,1k

ϵij (resp.,
bij,k = bij,1k

ϵij , rij,k = rij,1k
ϵij ) and ζij,k = k−ϵij , there

exists step-size sequences {αij,k : (i, j) ∈ E , k ∈ N} and
{βi,k : i ∈ V, k ∈ N} satisfying Assumption 5 if ϵij < 1

2 .

Proof. Set αij,k =
αij,1

kγij and βi,k =
βi,1

kδi
with γij > 1

2 and
γij + ϵij < δi ≤ 1. Then, Assumption 5 holds.

Remark 23. ζij,k in Proposition B.2 is the consistent with the
one given in Lemma A.2.

The following proposition takes Gaussian noise for example
to analyze the improvement of privacy-preserving capability
using BQB method compared to unquantized methods.
Proposition B.3. Assume that random variables zk, dk, lk,
random variables y, ϕk and real number Ck satisfy
i) zk = ϕ⊤

k y + dk + lk, sk = 2I{zk≤Ck} − 1;
ii) Given s1, . . . , sk−1, ϕk and lk are independent of y;

iii) dk is Gaussian distributed with zero mean, and independent
of d1, . . . , dk−1, y, ϕk, lk.

Then, EIs1:k(y) ≤ 2
πEIz1:k(y), where s1:k = {s1, . . . , sk}

and z1:k = {z1, . . . , zk}

Proof. By Lemma A.5, EIs1:k(y) =
∑k

t=1 EIst(y|s1:t−1)

and EIz1:k(y) =
∑k

t=1 EIzt(y|z1:t−1). Then, by Proposi-
tion 1 of [22] and Lemma 5.3 of [41], EIst(y|s1:t−1) ≤
2
πEIzt(y|z1:t−1). The proposition is thereby proved.
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